Tuesday, 12 December 2017

MATHEMATICAL FORMULAE



MATHEMATICAL FORMULAE


Algebra

1.  (a + b)2  = a2  + 2ab + b2 ;  a2  + b2 = (a + b)2 2ab
2.  (a b)2  = a2   2ab + b2 ;  a2  + b2 = (a b)2 + 2ab
3.  (a + b + c)2  = a2  + b2 + c2 + 2(ab + bc + ca)
4.  (a + b)3  = a3  + b3 + 3ab(a + b); a3  + b3 = (a + b)3 3ab(a + b)
5.  (a b)3  = a3   b3 3ab(a b); a3   b3 = (a b)3 + 3ab(a b)
6.  a2   b2 = (a + b)(a b)
7.  a3   b3 = (a b)(a2  + ab + b2 )
8.  a3  + b3 = (a + b)(a2   ab + b2 )
9.  an bn  = (a b)(an1  + an2 b + an3 b2 + ··· + bn1 )
10.  an = a.a.a . . . n times
11.  am .an = am+n
m


12.  a an


= amn  if m > n

= 1         if m = n
1


=
anm


if m < n; a  R, a = 0


13.  (am )n = amn  = (an )m
14.  (ab)n  = an .bn
a
 
  a  n        n
15.             =
b          bn
16.  a0  = 1 where a  R, a = 0
17.  an  = 1 , an =   1


an
18.  ap/q  = q ap


an


19.  If am = an and a = ±1,a = 0 then m = n
20.  If an = bn  where n = 0, then a = ±b
21.  If x, y are quadratic surds and if a + x = y, then a = 0 and x = y
22.  If x, y are quadratic surds and if a + x = b + y then  a = b and x = y

23.  If a, m, n are positive real numbers and a = 1, then loga mn  = loga m+loga n
  m  


24.  If a, m, n are positive real numbers,  a = 1, then loga      n


= loga m loga n


25.  If a and m are positive  real numbers,  a = 1 then loga mn = n loga m
logk a


26.  If a, b and k are positive  real numbers,  b = 1,k = 1, then logb a =
1


logk b


a
 
27.  logb a = log

where a, b are positive real numbers, a = 1,b = 1
b


28.  if a, m, n  are  positive  real  numbers,  a = 1 and  if loga m  = loga n,  then
m = n


Typeset by  AMS-TEX


2
 
29.  if a + ib = 0    where i =



1, then a = b = 0


 
30.  if a + ib = x + iy,    where i =  1, then a = x and b = y
2
 

31.  The roots of the quadratic equation  ax2 +bx+c = 0; a = 0 are b ±    b
2a



4ac




The solution  set of the equation  is


( b +


 b


 )


,
 
2a               2a
where = discriminant = b2 4ac
32.  The roots are real and distinct if > 0.

33.  The roots are real and coincident if = 0.

34.  The roots are non-real  if < 0.

35.  If α and β are the roots of the equation  ax2 + bx + c = 0,a = 0 then coeff. of x


 
i)  α + β = b =
a


coeff. of x2


·
 
ii)  α   β = c =
a


constant term
coeff. of x2


36.  The quadratic equation  whose roots are α and β is (x α)(x β) = 0
i.e.  x2   (α + β)x + αβ = 0
i.e.  x2 Sx + P  = 0 where S  =Sum of the roots  and  P  =Product of the roots.
37.  For an arithmetic progression (A.P.) whose first term is (a) and the common difference is (d).
i)  nth  term= tn  = a + (n 1)d
2                  2
 
n                  n


ii)  The sum of the first (n)  terms = Sn =
where l =last term= a + (n 1)d.


(a + l) =   {2a + (n 1)d}


38.  For a geometric progression (G.P.) whose first term is (a) and common ratio is (γ ),
i)  nth  term= tn = aγ n1.
ii)  The sum of the first (n)  terms:

a(1 γ n)


Sn   =


1n


ifγ < 1
γ


= a(γ


1)


if γ > 1 .


γ 1
= na                  if γ = 1

39.  For  any  sequence  {tn }, Sn Sn1 = tn  where  Sn  =Sum of the first  (n)
terms.
n


40.


P γ = 1 +2+3+ ··· + n = n (n + 1).


γ=1                                                2
n



41.


P γ 2  = 12 + 22 + 32 + ··· + n2  = n (n + 1)(2n + 1).


γ=1                                                          6


3



n
 
42.

P γ 3  = 13 + 23 + 33 + 43 + ··· + n3  = n


(n + 1)2 .


2
 
γ=1                                                                   4
43.  n! = (1).(2).(3).... .(n 1).n.
44.  n! = n(n 1)! = n(n 1)(n 2)! = .... .
45.  0! = 1.
46.  (a + b)n  = an + nan1 b + n(n 1) an2 b2 + n(n 1)(n 2) an3 b3 +    +



bn ,n > 1.


2!                                   3!


··· 



MATHEMATICAL FORMULAE

M A TH E M A T I CA L F O R M U LAE A l g e b r a 1.   ( a + b ) 2   = a 2   + 2 a b + b 2   ;   a 2   + b 2 = ( ...